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Experimental data collection

Data-driven modelling

Conclusion

The laboratory measurements enabled energy balancing over the LTES to calculate the
progression of SoC during repeated cycling. The calculated SoC weas then used as the
‘true’ value to be replicated through data-driven modeling. It must be noted that some error
was still present in these values resulting from the numerous calculation steps.

The choice of data-driven modeling framework was nonlinear autoregressive model with
exogeneous input (NARX). This approach makes use of multiple previous values of the
system’s output , along with previous values of one or more external input to predict the
current output value, as described by the equation below:

An artificial neural network was trained to approximate the function , relying in part on 
its own previous predictions, making the network architecture (figure 3) recurre . Since
frequent resets are impractical in the foreseen application, the network must also learn to
compensate any systematic errors accumulating over time. Models were developed
iteratively, exploring different numbers of hidden neurons in one or two layers, as well as
changes in available predictor temperatures and their considered lags (previous values).

Results:

The performance of NARX models were tested on separate data not used for training. The
best-performing versions, such as V1 depicted in figure 4, are able to track the SoC with an
RMSE below 0.4 kWh on both training and test data, and the largest deviations in the range
of 1kWh. Model versions employing a small network (<10 neurons) show limited capacity
to capture the system’s complexity, while an excessive number of hidden neurons (>30) or
input lags leads to overfitting. Model V1 (see specifics in table on the left) represent a
suitable level of complexity for the amount and quality of training data available in this
study. Reducing the number of available predictor temperatures resulted in noticeably
worse performance on both training and test data, with deviations in excess of 2 kWh.

Thermal energy storage (TES) in residential buildings promotes the integration of renewables by
shifting energy demand related to space heating, cooling and domestic hot water (DHW) to periods
of favorable energy supply conditions. Latent thermal energy storage (LTES) leverages phase
change materials (PCM) to enable higher energy densities, making it particularly advantageous for
residential applications. Despite potential benefits, the development of LTES systems faces
challenges in achieving economic feasibility and effortless integration into existing heating and
cooling systems. One such challenge is posed by determining the state of charge (SoC), i.e., the
amount of available energy in the LTES, which is required for reliable and efficient system
operation. Contrary to sensible storage systems, the highly nonlinear thermal behavior of PCMs
hinders straightforward SoC estimation from temperature measurements. Alternative approaches
proposed in literature often require the addition of new, potentially expensive equipment.

Figure 4. Test performance  of NARX model version 1

Figure 1. measurement setup

NARX network V1 parameters & results 

inputs  T3, T4, T5, T6, T8 

input lags all up to 5 min 

output lags 10, 20, 30, 50, 80, 120, 
180, 240, 300 sec 

hidden layer(s) 1 layer, 20 neurons 

regularization L2, weight 0.1 

training epochs 16 

RMSE training 0.238 kWh 

RMSE testing 0.326 kWh 

 

 Laboratory measurements revealed complex relationship between the progression of the recorded predictor
temperatures and calculated SoC, but several patterns indicative of certain storage states could be identified.

 Several NARX network versions showed promising training and test results, while limitations posed by the
quantity and quality of training data was acknowledged.

 The viability of the presented approach could be established, as models relying only on a set of temperature
signals demonstrated sufficient prediction accuracy to support effective energy management in buildings.

Goal and approach:

This study investigates real-time SoC estimation for a LTES with practical approaches that do
not rely on signals from costly measurement equipment. The works focuses on demonstrating
a data-driven method, developed in two main steps:

 Conducting a series of controlled experiments on a LTES using a laboratory setup for
charging and discharging under a variety of realistic operating conditions. The evolution of
its SoC is computed with an energy balance as the storage undergoes repeated cycling.

 Training and testing a data-driven model to estimate the calculated SoC evolution in real
time, but only relying on a subset of the measured quantities as inputs, restricted to five or
less temperature signals.

Experiments were conducted on a laboratory setup, a simplified depiction can be seen in figure
1. The LTES features a finned tube heat exchanger (HEX) immersed in an inorganic PCM with
a melting Temperature of 58°C. Since the storage is primarily designed for DHW application,
it is fitted with two hydraulically separate circuits. The charging circuit was controlled to
mimic the behavior of a heat pump, the mass flow was set constant for individual cycles and as
long as the temperature was below a defined setpoint (65°C), the heating element supplied
nominal power. As the storage inlet temperature T3 reached the setpoint, the power started
reducing to maintain the setpoint temperature, and charging terminated when the outlet
temperature T4 was sufficiently close to T3. Three combinations of charging flow rate and
nominal power were tested, on at least three cycles each.

Various discharging profiles were used, ranging from uninterrupted discharge with constant
flow rate, to operation with a synthetically generated DHW demand profile. Discharging with
four constant flow rates ranging 3 - 10 kg/min were measured, lasting until the sensor T8
recorded a value below 51°C. A second group of cycles included periodic interruptions,
defined by the amount of energy discharged at once and the frequency of discharging events.
Resulting periods of standstill allowed for thermal equilibration inside the storage. The third
group of cycles represented more realistic operation of a DHW storage, with no strict
separation of charging and discharging segments. A synthetic DHW demand profile
determined discharging power at any given time, and recharging of the storage occurred
independently whenever the temperature threshold was reached, meaning both circuits were
often active simultaneously.

Observations:

From the measurement results – see example in figure 2 – it is apparent that no straightforward
relationship can be established between the SoC and the temperatures to be use as predictors
for the data-driven model. However, several patterns appear to indicate certain storage states.
For example, SoC influences the outlet temperatures T4 and T6 along with their derivatives
when the respective circuit is active, while T8 provides insight into the progression of phase
change along the height. When there is no flow through one or both circuits, the recorded
temperatures still provide valuable insight. T5 consistently increases whenever there is no
flow, while the rate of this increase also seems to correlate with SoC. Additionally, the
beginning of discharging evens can clearly be identified by a sudden drop of this temperature.

Figure 2. Evolution of the predictor temperatures 
during cycling with synthetic demand profile and 
simultaneous recharging

Figure 3. Recurrent NARX network architecture


