HOCHSCHUE Luzern

Technik & Architektur

Master of Science in Engineering Mechatronics & Automation

Master-Thesis Engineering – Mechatronics & Automation

Optimizing Assembly Line Efficiency Using Discrete-Event Simulation

Fig. 2: Input / Output diagram of discrete-event simulation model

Navigation	n bar	Appliances				Time
/2 *2 Synced	Trace					t=45.560
MB01 : a Salabim model	- 011					
	Done_buffer			_		
MB01_210 41149002052	MB01_210_buffer					
MB01_200 41149002053	MB01_200_buffer					
	MB01_190_buffer		00005100			
MB01_180 41180005399	MB01_180_buffer		180005402			
	MB01_170_buffer	41180005404 41180005405	_			
	MB01_160_buffer		_			
MB01_140 41180005406	MB01_140_buffer					
MB01_130 41180005407	MB01_130_buffer					
MB01_120	MB01_120_buffer					
MB01_110	MB01_110_buffer	41180005409				
MB01_10041180005410	MB01_100_buffer					
MB01_09041180005411	MB01_090_buffer					
MB01_080	MB01_080_buffer					
MB01_060 📕 41180005412	MB01_060_buffer	41180005413 41180005414 411	180005415 🔜 41180005416			
MB01_050 41180005417	MB01_050_buffer					
MB01_040 🚺 41180005418	MB01_040_buffer	41180005419 41180005420 411	180005421			
MB01_01041180005422	MB01_010_buffer					
	1	· · · · · · · · · · · · · · · · · · ·				

Fig. 4: Estimated assembly line output according to simulation with successive integration of real data

	Order													C											
Property	1	2	3	4	5	6	7	8	9 1	0	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Scores
																									$c_1 = 1$
Comfort Level	2Т				$4\mathbf{T}$	т 📗 бт				$4\mathrm{T}$											9Т			$c_2 = 0$	
		4 1			41			01		41														$c_4 = 1$	
																									$c_{5} = 1$
Width	55							60															$c_{3} = 1$		
Capacity	NR						GR								NR					GR		$c_6 = 0.83$			
Drawer	No							Yes							No							$c_7 = 0.86$			
Colour							I							V	W C			N	N C W I			$c_8 = 0.52$			
																						Tot	tal Sc	ore	6.21

Fig. 5: Order of constraint-relevant properties of the real assembly plan

Workstations Buffers

Buffer length

Fig. 3: Animated discrete-event simulation model

Background and Motivation

V-ZUG AG is a leading supplier of household appliances in Switzerland. Due to the expensive production site in Zug, V-ZUG AG has put a lot of effort into transforming towards a vertical factory over the past few years. The goal is to maximize efficiency while minimizing the required footprint. Therefore, smart manufacturing systems are required.

The challenge for modern manufacturing companies is to analyse and make use of all the information provided. Especially complex systems, such as an assembly line, generate a lot of data which is often not used. However, this data can often be very useful not only to get a better understanding of the process itself, but also to make data-based decisions and optimize the process. In the context of an assembly line, efficiency is highly dependent on the order in which the different types of appliances are produced. This thesis focuses on the assembly line for dishwashers (cf. Fig. 1).

Approach

In order to create a digital representation of the real-world assembly process, a discrete-event simulation model was built using the Python library Salabim (cf. Fig. 2 & 3). Based on real data gathered from the process, statistical models for the processing time on the workstations and the transfer time between them are derived. At the end, the assembly order is optimized with a genetic algorithm.

Results

The simulation model is found to make a good approximation of the actual assembly line output which often lies within the \pm 5 % - tolerance. However, sometimes, the model's approximation is much higher than the actual output achieved. By successively integrating the real data, this mismatch can be illustrated (cf. Fig. 4). Although the model contains a lot of uncertainty, this can also be a sign for an unforeseen event that happened during that day (e.g. machine downtime, etc.). The genetic algorithm uses this model to optimize the assembly order with regards

Colour

Total Score $\mathbf{5.4}$

Fig. 6: Order of constraint-relevant properties of the optimized assembly plan

> to certain soft-constraints as well as the required assembly time according to the simulation. The optimization of an example assembly program led to an estimated time reduction of 30 minutes (cf. Fig. 5 & 6). With a theoretical cycle time of 85 seconds, this would correspond to 20 appliances which could potentially be produced more that day.

Mathias Schuler

<u>Advisor</u>

Prof. Dr. Adrian Koller

<u>Expert</u>

Prof. Dr. Christian Bermes

Partner company V-ZUG AG

FH Zentralschweiz

