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Pore space exploration with multi-scale X-ray computed tomography
Super-Resolution methods in X-ray Computed Tomography

X: Input image (blurred) 1. Extract feature F; X from the blurred input X
2. Compute its Fourier transform: F(F;X)
3. Multiply with Wiener filter: G; - F(F; X)

4. Inverse Fourier transform: F;Y

Y: Ground truth (sharp image)

Yorea: Predicted output of the model Ground truth image
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Fig. 2: Quantitative evaluation of pore segmentation on real CT data.

Left: Upscaled 2x using KernelGAN only.

Center: Upscaled 2x using KernelGAN with additional sharpening (Gaussian PSF, o = 1.25).
Right: Comparison of deblurred 26 um data with original high-resolution 13 ym scan.
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Fig 3: Visual comparison of upscaling and
sharpening strategies on real CT data

residual architecture. For real CT data
lacking high-resolution ground truth,
KernelGAN was employed as an
unsupervised method to estimate image-
specific point spread functions (PSFs). The
training data were based on synthetically
generated blur using controlled Gaussian
kernels and down-blur-up procedures to
simulate realistic degradation.

Introduction

In the analysis of porous materials with
computed tomography (CT), resolution is a
critical factor for detecting fine pore
structures. However, high-resolution CT
scans are often associated with long
acquisition times, increased image noise,
and a limited field of view. This presents a
particular challenge for the quantitative
analysis of small pores or densely
connected structures. Conventional inter-
polation or sharpening methods typically
fall short, as they do not enable true
reconstruction of not-perceivable image
content. Therefore, there is a need for
robust methods that can specifically
enhance image details and segmentability,
even under constrained scanning conditions.

and line profile analyses confirmed a
significant increase in edge sharpness. The
method thus demonstrates strong
potential for reliable post-processing in CT-
based pore analysis, though it remains
naturally limited in cases of severe
information loss due to heavy blurring.
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Results
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In synthetically blurred images, the Deep
Wiener Deconvolution Network was able to
detect up to 70% more pores under
moderate Gaussian blur compared to the
unprocessed input, including structures as
small as 1-3 pixels (Fig. 2 and Fig. 3).
Otsu-based segmentation showed close
agreement with the ground truth,
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Materials and Methods

This work investigates a hybrid approach
that combines physics-based deconvo-
lution with data-driven learning. The Deep
Wiener Deconvolution Network (Fig. 1)
integrates classical Wiener filter theory into
a trainable deep network with multi-stage
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particularly for small to medium-sized
pores (1-100 pixels). For real CT datasets,
where the PSF was estimated using Kernel-
GAN, visible improvements were achieved:
complex pore networks with narrow
connections became more distinguishable,

MASTER OF SCIENCE
IN ENGINEERING

MSe= |



	Pore space exploration with multi-scale X-ray computed tomography

