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Control of a Furuta Pendulum with Optimization and Reinforcement Learning
Modelling, optimization and reinforcement learning control on a rotary inverted pendulum
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Problem statement

A mathematical model of the system is
established using Lagrange equations extended
with the Rayleigh dissipation function to
Incorporate the non-conservative torques into the
energy equations. Rapid simulation models are
built, and friction parameters are identified
through experiment design and optimization to
iIncrease the model's accuracy. Swing-up control
of the Furuta pendulum is accomplished by
optimizing a voltage sequence first in simulation
and then validating it in the real setup. MATLAB
software is integrated into the real setup to test
the control algorithms through real-time data
transfer. Moreover, reinforcement learning control
Is explored with different tasks. The
performances of two reinforcement learning
agents, SAC and TD3, with actor-critic structure,
are compared with several reward functions. The
velocity control and pendulum stabilization tasks
are achieved in simulations.
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Figure 9.4: Critic Network

Key Concept

Nonlinear systems pose extra control challenges.
The Furuta pendulum, an underactuated
mechanical system, is an experimental platform
for developing nonlinear control methods. This
project presents advanced control approaches
for the Furuta pendulum, highlighting the
efficiency of optimization and reinforcement
learning with complex system dynamics

Results

Optimization techniques are explored to identify
the physical parameters of the experimental
setup for a robust simulation. After successfully
replicating the setup, a swing-up control
sequence for the Furuta pendulum is also
obtained using optimization. Designing cost
functions for optimization to avoid local
minimums was challenging, leading to in-depth
research on gradient-based methods for
effectively implementing optimization algorithms.
The voltage sequence optimized for swing-up is
then validated in the actual setup.
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Figure 9.5: Actor Network SAC
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Figure 9.6: Actor Network TD3

Two reinforcement learning agents with different
policy gradient methods are brought into desired
structures and tested with various reward
functions and parameters. Experiments were
conducted to explore learning methods for the
swing-up and stabilization of the Furuta
pendulum. While the swing-up control was not
reached, pendulum stabilization was successfully
achieved in the simulation.
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