HSLUHOCHSCHULE

Technik & Architektur

Master of Science in Engineering Business Engineering

Master-Thesis – Master of Science in Engineering

Leveraging existing Sunamp products for seasonal storage in Switzerland

uilding period	Electricity consumption over the year [kWh]					
unung periou	With Ice storage	With Permafrost P5	With Permafrost P11			
efore 1919	5,089.16	4,497.40	3,867.76			
919-1945	5,046.56	4,459.75	3,835.39			
946-1960	5,050.65	4,463.37	3,838.50			
961-1970	5,252.01	4,641.31	3,991.53			
971-1980	5,719.39	5,054.34	4,346.73			
981-1990	4,489.44	4061.88	3,481.61			
991-2000	4,784.80	4,317.99	3,934.17			
001-2005	2,544.64	2,313.31	2,035.71			
006-2021	2,560.52	2,327.74	2,048.42			

Devilation and a d	Savings over 20 years if a P5 is in-	Savings over 20 years if a P11 is in-
Building period	stalled instead of ice [CHF]	stalled instead of ice [CHF]
Before 1919	3,219.19	6,644.41
1919-1945	3,192.25	6,588.80
1946-1960	3,194.83	6,594.13
1961-1970	3,322.20	6,857.02
1971-1980	3,617.84	7,467.23
1981-1990	2,325.96	5,482.62
1991-2000	2,539.44	4,627.43
2001-2005	1,258.43	2,768.57
2006-2021	1,266.29	2,785.85

Szenarios for strategy 2 (W4O2) Savings strategy 2

Building foot	Parcel area
Area available	

Month	Heat demand distribution (Heating + hot water) (Bauer, et al., 2019)	Heat de- mand dis- tribution (Heating)	Heat de- mand heating [kWh]	COP (W35)	COP (W55)	Electricity consump- tion (W35) [kWh]	Electricity consump- tion (W55) [kWh]
Jan	16.00%	14.00%	1,680	4.2	2.75	400	610.91
Feb	13.00%	11.00%	1,320	4.2	2.75	314.28	480
Mar	12.00%	10.00%	1,200	4.8	3	250	400
Apr	8.00%	6.00%	720	4.8	3	150	240
May	3.00%	1.00%	120				
Jun	2.00%	0.00%	0				
Jul	2.00%	0.00%	0	Not rele	vant as th	nis would be the	e charging
Aug	2.00%	0.00%	0	time of	the therm	al storage	
Sep	5.00%	3.00%	360				
Oct	9.00%	7.00%	840				
Nov	12.00%	10.00%	1,200	4.8	3	250	400
Dec	16.00%	14.00%	1,680	4.2	2.75	400	610.91
Total			7,800			1,764.29	2,741.82

Thermal power of the storage[kW]					Buil	ding peri	od			
		Before	1919-	1946-	1961-	1971-	1981-	1991-	2001-	2006-
		1919	1945	1960	1970	1980	1990	2000	2005	2021
Hot water sh	nare	20%					25%	30%	% 40%	
Multiapart-	2	7.92	7.31	6.72	6.93	7.47	6.21	6.51	4.29	3.92
ment build-	4	15.83	14.61	13.45	13.87	14.95	12.42	13.01	8.59	7.84
ings with x	7	27.70	25.57	23.54	24.27	26.16	21.74	22.77	15.02	13.72
apartments	10	39.58	36.53	33.62	34.67	37.37	31.05	32.53	21.46	19.60

Szenarios for strategy 1 (S3O4)

High temperature storages (HTS)

Relation of power and capacity for ice storages

			Amount of apartments	Ice storage	Permafrost 20 – P5	Permafros P11
			7 (before 1980)	4,400.00		
	Capacity	Capacity [kWh]	7 (1980 – 2000)	3,900.00	2,400.00	3,243
			10	6,055.00		
_	Volume [m ³]	7 (before 1980)	35.00	33.00	68.00	
		7 (1980 – 2000)	30.00			
		10	48.00			

	Author's e	evaluation	1	Market perspective		
Value criteria	Ice storage	Permafrost 20 – P5	age	Ice storage	Permafrost 20 – P5	
Comfort	2	1	6.79	13.58	6.79	
Efficient	1	2	7.36	7.36	14.72	
Having an energy label (A++ to G)	2	1	4.57	9.14	4.57	
Low CO ₂ emissions	1	2	5.64	5.64	11.28	
Low buying price	1	2	5.36	5.36	10.72	
Low maintenance	1	2	5.07	5.07	10.14	
Low running costs	1	2	7	7	14	
Proven and known technology	2	1	2.71	5.42	2.71	
Safety	2	1	7.86	15.72	7.86	
Space saving	2	1	2.64	5.28	2.64	
Total				79.57	85.43	

Market view of strategy 2

SWOT - TOWS		External analysis				
		Opportunities	Threats			
		Strength - Opportunity strategies	<u>Strength – Threat strat-</u>			
	Strengths	S3O4 - Tackle existing buildings with	<u>egies</u>			
analy		high power demand				
anaiy- sis		Weakness - Opportunity strategies	Weakness - Threat			
	Weaknesses	W4O2 - Use higher efficiency to re-	<u>strategies</u>			
		duce running costs				

Electricity savings with HTS

Low temperature storgages (LTS)

SWOT and strategies identified for Sunamp

Market potential for Permafrost 20 – P5

Research problem

Thermal seasonal storage exists and has been implemented in Europe on a district level. The questions arises if this implementation could be used as well for single buildings. The analysis focuses on Sunamp's technical capabilities compared to existing products. A key finding is that the use of hightemperature storage with air-to-water heat pumps for seasonal applications is not beneficial. Even with ideal conditions (no thermal losses) and free summer charging, it is more costeffective to operate the heat pump less efficiently during winter than to invest in a large seasonal storage. Therefore, the focus shifts to low temperature like the ice products storage. Additionally, the market view is considered with interviews and a survey. It is considered that ice storages are a competitive product against ground source heat pumps, as the research showed. The main driver for installing and ice storage though is the regulations to not drill boreholes at the location. This fact was studied during the research.

Solutions

Sunamp's PCM options, P5 and P11, are analysed in comparison with ice storages in two scenarios: single-family homes and multiapartment buildings (with two, four, seven and ten apartments).

Evaluation

The results show that Sunamp's products with cannot compete standardized ice storages in singlefamily homes due to higher investment costs. Even with the heat pump's increased efficiency (lower running costs), it is not possible to compensate the initial costs. However, an important observation is made for ice storages: as power increases linearly, ice storage requires exponentially more water. The analysis identifies multiapartment buildings with seven apartments in Canton Vaud and Canton Geneva as the target market for Sunamp's P5. Over 6,700 buildings in Switzerland could benefit from these solutions.

Advantages include lower investment costs (around CHF 40,000 less than ice storage for the same application) and reduced running costs due to higher storage temperatures and improved heat pump efficiency.

Robert Gandia

Hauptbetreuer Prof. Dr. Patrick Link

Experte

Timo Krieger

Kooperationsfirma Sunamp Ltd

FH Zentralschweiz

