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Goal and Motivation  

Data-driven modelling has gained mo-

mentum in science and engineering 

and Computational Fluid Dynamics 

(CFD) is an exemplary field to explore 

this approach. Central to this thesis is 

the specific framework of Field Inver-

sion and Machine Learning (fig. 1, 2) 

[1, 2, 3, 4]. The goal is to apply the 

proposed framework within a given 

pressure-coupled CFD solver [5]. 

Methodology 

In the Field Inversion (FI), an objective 

function is formulated in terms of the 

difference between the base model to be 

improved and the truth model (e.g. ex-

perimental data). Additionally, a 

Tikhonov regularization is applied. An 

optimization algorithm is employed to 

iteratively minimize this function and 

extract a discrepancy field. Secondly, a  

Machine Learning (ML) algorithm 

learns the relationship between this 

discrepancy field and selected features 

of the base model. The machine 

learning model is linked to the base 

model, capable of conducting 

simulations resembling the truth 

model. 

Results 

Using a U-turn pipe it is shown that the 

paradigm is capable of inferring the 

discrepancy field via an inverse problem 

using full-field data and that ML tools 

are able to recreate this field for new 

simulations. A random forest has been 

shown to be a better choice than a 

neural network. A generalization test 

proofs that the paradigm is capable of 

being applied to different flows and 

geometries, as long as they are similar 

(fig. 3). Using the friction coefficient as  

sparse data to inform the objective 

function for the hump, it is found that 

difficulties arise to obtain a result which 

neither under- nor overfits the truth 

model data during the FI (fig. 4). 

Discussion  

The results of this thesis have shown 

that the Field Inversion and Machine 

Learning framework poses vast potential 

in improving RANS turbulence models. 

Further testing is needed, especially 

using sparse data as truth model to 

investigate the overfitting during the FI. 

A Bayesian formulation of the objective 

function might leverage the optimization. 

Feature and algorithm selection for the 

ML should be further investigated to find 

a more general model capable of 

predicting a variety of flows and 

geometry settings.   
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Figure 2: Overview of the Field Inversion and Machine Learning (FIML) paradigm 

Figure 3: Prediction results of the friction coefficient (Cf) along the outer 

wall of a 90° pipe after training on varying geometries (U-turn, S-shape 

and >90° bend pipe) 

Figure 4: FI results using only sparse data (e.g. friction coefficient 

along boundary cell faces) for the formulation of the objective 

function on the hump geometry 

Figure 1: Building blocks of FIML: Adjoint driven optimization (top) 

and machine learning algorithms such as a neural network (bottom) 


